
Using Your Head: Identifying Windows Malware by Deep Learning on PE
Headers

Jasmine Cai
jlcai@umass.edu

Jeremy Dunn
jeremydunn@umass.edu

University of Massachusetts Amherst

Timafei Hushchyn
thushchyn@umass.edu

Abstract

In this work, we address the problem of identifying unknown
malware samples using a limited section of their program:
the header of the Windows PE file. Most methods do not
utilize deep learning techniques and instead opt for rule-
based machine learning algorithms or supervised learning
algorithms like the Random Forest algorithm, if any ma-
chine learning is utilized at all. In our work, we analyze the
effectiveness of utilizing deep learning neural nets such as
multi-layer perceptrons (MLPs) and fully-connected neural
networks (FCNets) that we create and train for this mal-
ware identification task. Our results demonstrate that a
generic Random Forest classifier is effective at predicting
malware based on its header (with 98.93% accuracy) and
deep learning approaches are also effective, with a MLP
having 94.98% accuracy and a FCNet having 95.36% ac-
curacy. We also explore the rate in which our three models
can classify samples per second across two different types
of hardware to ensure flexibility of utilizing our methods
across many potential security appliances, both of which
obtain high rates of classification.

1. Introduction

Antivirus and intrusion detection systems utilize many dif-
ferent techniques to determine if files are malicious or
not. Among these techniques, machine learning algorithms
have shown promise, specifically in the realm of supervised
learning. However, not all machine learning techniques
have been explored. In this paper, we explore deep learning
techniques involving neural networks to perform malware
detection. By limiting the scope of the data we look at to a
few specific header fields, we allow for simple and fast clas-
sification of malware samples while maintaining the flexi-
bility that a machine learning based approach allows. This
fast classification makes the approach practical in situations

that require a fast turnaround, such as scanning incoming
files through a network-based Intrusion Detection System.

We classify samples as ”clean” or ”malicious” using a
limited section of their program - namely the header of the
Windows PE file. The Windows PE file is a file format for
executable files in the Windows operating system. Previous
work has indicated that the header of PE files can determine
if the file is malware or not, since it contains the main in-
formation about a process runtime [5]. The format of a file
PE header can be seen below, along with some examples
of section header names (i.e. .text, .data, .rsrc, etc.) being
some of the key features we looked at alongside unpictured
optional headers like magic numbers.

Figure 1. Figure of Windows PE file basic structure from [2]

We explore several types of classifier algorithms: ran-
dom forests (RFs), multilayer perceptrons (MLPs), and
fully-connected neural networks (FCNets). We assign im-
portance to each feature by assigning embeddings and de-

1



termining how a model places its own importance on each
feature, as well as performing our own frequency statistic
tests on each feature to determine if any specific headers
have values of note.

Our dataset is comprised of Windows PE files, with our
target features all being extracted from their headers. We
source our “clean” files from a fresh Windows distribution
installed in a virtual machine. Several common applica-
tions were installed on the system, such as VMware, Google
Chrome, and Office365. The test system was scraped for
all PE files it contained, and each valid file was processed.
The “malicious” files were sourced from Vx-Underground
[9], a well known repository of malware that is commonly
used by analysts when developing tools. We downloaded
four “collections” - the Bazaar, InTheWild, VirusShare, and
VirusSign collections. These collections contained tens of
thousands of files and totaled roughly 100 GB of data.

Each file was processed using the Python ‘pefile‘ library
and had all of its relevant header information extracted. The
header values and hashes were stored in a JSON object in-
dexed by the MD5 hash of the file. This ensured there were
no duplicate files in the dataset. Once extraction was com-
plete, our dataset consisted of 36,037 clean samples and
26,979 malicious samples.

Our results will show the rate of false positives where
files are predicted as containing malware but are ”clean”,
false negatives, and true positives and negatives. We have
high truth rates where each predicted label is correct and
have low false rates. This was be achieved by having high
precision and recall scores in addition to general accuracy.

Our results evaluation is based on each model’s ability
to correctly predict the label of the testing data after train-
ing, as well as the speed with which the classification was
made. Our model’s effectiveness will be evaluated on the
rates stated above.

2. Related work

2.0.1 Dataset Collection

Collection of both malware and non-malware samples has
traditionally been performed via web scrapers which down-
load samples from the Internet.

Another common tactic in past literature to collect mal-
ware samples is to use crowd-sourced datasets that already
exist [4] [6]. Non-malware samples, commonly called be-
nign samples in literature, were often collected from default
Windows files [3], although another technique was to get
samples from popular programs [6]. An issue pointed out
by Kumar et al. is that it would be useful to have a common
dataset to do comparisons with past work, but such datasets
are often unavailable. Unfortunately, this is still an issue,
despite the fact that some papers claim to make their respec-
tive dataset available. On the other hand, old samples might

not be as useful for considering modern efficacy, though it
would be useful to do inter-method comparison.

2.0.2 Malware Sample Identification

Previous approaches to identifying unknown malware sam-
ples rarely attempt deep learning techniques and instead
rely on manual sorting procedures, rule-based machine
learners, or other supervised learning algorithms like Ran-
dom Forest.

Liao utilized their own rule-based algorithm without ma-
chine learning to detect malware in files. They wrote their
own collection of rules and evaluated different combina-
tions of five PE header features to see which is most effec-
tive at detecting malware in that file. Their highest correct
detection accuracy was 99.5% with all five features. This
approach is limited to the five features that were studied. In
our approach, we aim to be able to use our models to find
features of note themselves in PE headers to determine the
likelihood of a file being malware after having a feature of
note present in its header.

Schultz et al. utilized the rule-based machine learner
RIPPER and probabilistic classifier Naive Bayes as their
models for detecting malware in files. The overall accuracy
of their RIPPER model of correctly detecting malware in
their files was 89.36% with DLL function calls. Their Naive
Bayes classifier fared better with an accuracy of 97.11%.
Their RIPPER model had a peak detection rate of 71.05%
and their Naive Bayes model had a detection rate of 97.43%.
We seek to try to get higher detection rates, at least com-
pared to the RIPPER model.

Markel and Bilzor used three non-deep learning classi-
fying approaches: Naive Bayes, decision trees, and logistic
regression. They used metadata extracted from Windows
PE Headers as the input data. The decision tree classifier
was the most effective followed by logistic regression and
finally the Naive Bayes classifier. Though, when they low-
ered the prevalence of the malware samples in the training
and test data, they noticed a decline in the performance in
all three classifiers, especially in the logistic regression clas-
sifier. This is of interest because in actual uses, there will
be a bias in the data toward having lots of benign samples.

Firdausi et al. was of interest because in addition to us-
ing various non-deep learning methods such as SVMs and
decision trees, they utilized MLPs. For their data input, they
generated XML files that described the behavior of benign
and malware samples and then trained classifiers based on
those XML files as input with some preprocessing steps.
With feature selection, they found that all the techniques
used scored approximately 92%, including the MLP model.

Overall, the literature suggests that using machine learn-
ing to classify malware, including from Windows PE Head-
ers, is effective. One paper also showed that using deep

2



learning is effective, though they used a different approach
to input data. Thus, it remains to be explored if deep learn-
ing is a good approach to classifying malware via Windows
PE Headers. This is the gap that we will address in our
paper.

3. Method
3.1. Dataset Collection

To gather clean data samples, we set up a Virtual Machine
with a fresh copy of Windows 11 Pro Version 24H2. Sev-
eral common applications were then installed on the VM,
such as VMware, Office365 and Google Chrome. We then
created a Python script that scanned the C: drive for every
PE file on the system and processed every file it found.

To gather the malware samples, we utilized Vx-
Underground’s extensive malware repository, namely their
Bazaar, InTheWild, VirusShare, and VirusSign collections.
Each collection was downloaded to a sandboxed malware
analysis VM, decrypted, and verified for integrity through
validation of checksums. The same processing script was
used as for the clean files, except this time it was limited to
the malware collection as opposed to the operating system.

For each PE file found, the following procedure was run.
The specific values were obtained using the Python pefile
package, which is a well established tool for extracting data
from PE files.

Algorithm 1 Algorithm for processing a Windows PE file
to get the data from headers of note.

1: procedure PROCESSFILE(file)
2: data = ()
3: for section name in file.section names do
4: data[”sections”]← section name
5: end for
6: for optional header in file.optional headers do
7: data[”optional”] ← {optional header.name:

optional header.size}
8: end for
9: return data

10: end procedure

The data was then stored in JSON format for easy re-
trieval of information.

In all, we processed 36,037 unique clean samples and
26,979 unique malicious samples, for a total of 63,016 sam-
ples. This provided a varied and robust training set from
which we obtained our results.

3.2. Feature Extraction, Embeddings, and Pre-
processing

In the dataset of 63,016 files, we identified 2003 unique
headers. This was too many to train on directly, as our

model would have run into issues with dimensionality.
After extensive testing, we settled on a fifteen parameter

model. Fourteen of those parameters were from the optional
headers section of the binary, and one parameter was a com-
bined representation of the section names.

To determine the most impactful optional headers to
use, we calculated the mean and standard deviation of each
header across the respective clean and malicious datasets.
The results of this are included in Table 4. We manu-
ally reviewed the data, then selected the headers that ap-
peared the most different between the clean and malicious
datasets. The fourteen optional headers we chose to focus
on are: SizeOfCode, SizeOfInitializedData, SizeOfUnini-
tializedData, BaseOfCode, SectionAlignment, FileAlign-
ment, SizeOfHeaders, SizeOfStackCommit, SizeOfHeap-
Commit, LoaderFlags, NumberOfRvaAndSizes, DllChar-
acteristics, MajorImageVersion, and CheckSum.

If a dataset sample did not have one or multiple of these
optional section headers, the optional header representation
was set to the placeholder 0xFFFFFF, or 4294967295. This
is a value not found in any of the optional headers that were
present, and allows for the model to identify if one of the
headers is missing and potentially use that in its classifica-
tions.

Literature has also indicated that the section names of
a binary can provide insight into whether it is malicious.
In particular, it has been noted that uncommon section
names are far more common in malware than in clean files.
There are thousands of potential section header names, with
ones that are present across all binaries, such as ”.rdata”,
”.data”, ”.pdata”, ”.rsrc”, and ”.reloc”, but also miscella-
neous unique ones that can be set by a developer.

To account for this in a reasonably space efficient man-
ner, we created a fifteenth “header” alongside the fourteen
optional headers called “SectionHeaders”. This header con-
sists of the bitwise XOR of the UTF-8 representation of a
binary’s section header names. We chose the XOR opera-
tion because of it’s commutative and associative properties,
which will allow the XOR of headers with the same section
names to look the same, while headers with unique names
will have a different pattern.

The data that we passed into our models ultimately be-
came a tensor for each binary, where each tensor consisted
of the values of each of these optional headers and the
XOR’ed section names. For example, our first binary had
the information in Table 1.

To allow all of the values to have the same type and
make processing the model easier, we converted the XOR
of the section headers to an integer – see Algorithm 2. This
would be our new ‘SectionHeaders‘ value: 309388837382.
As such, our tensor representation for the above would be
[65536, 57344, 0, 4096, 4096, 4096, 4096, 8192, 4096, 0,
16, 49504, 10, 168463, 309388837382].

3



Table 1. Binary #1 (md5: a9f8e7392f8f8661997d67fbde92eed5)
optional header values and section header names prior to trans-
forming into dataset tensor.

Header Value
SizeOfCode 65536
SizeOfInitializedData 57344
SizeOfUninitializedData 0
BaseOfCode 4096
SectionAlignment 4096
FileAlignment 4096
SizeOfHeaders 4096
SizeOfStackCommit 8192
SizeOfHeapCommit 4096
LoaderFlags 0
NumberOfRvaAndSizes 16
DLLCharacteristics 49504
MajorImageVersion 10
Checksum 168463

SectionHeaders
fothk, .rdata, .data, .pdata,
.rsrc, .reloc

Algorithm 2 Algorithm for creating our fifteenth data point
for a binary, the ”SectionHeader” representation.

1: procedure XORALGORITHM(section names)
2: hex names = ()
3: result = ”\x00\x00\x00\x00\x00\x00\x00\x00\x00”
4: for section name in section names do
5: hex names← hex(section name)
6: end for
7: for item in hex names do
8: result← item ⊕ result
9: end for

10: return int(result)
11: end procedure

The labels were, as mentioned before, 0 denoting a
“clean” binary and 1 denoting a “malware” binary.

3.3. Models

We investigated two different types of deep learning neural
network models to apply to the task of malware identifica-
tion via PE headers: a multi-layer perceptron (MLP) and
a fully-connected net (FCNet). We also created a generic
Random Forest classifier, which was seen in many other re-
lated works tackling the same problem. Our RF classifier
utilized Scikit-Learn [7] and our MLP and FCNet models
utilized Pytorch [1].

The MLP is comprised of two linear layers with one non-
linearity (i.e. ReLU) in-between. Our FCNet has a similar
structure but with more fully-connected layers in between,
which we tuned. Both of these models act like a binary

classification model to predict the label of our inputs.
For the MLP and FCNet models, we also used min-max

scaling because the different features had wildly different
magnitudes. This leads to poor gradient calculations (either
very big or very small) and leads to our models having basi-
cally the same performance as a coin-flip. Min-max scaling
fixes this because it gets all of our features to be in a range
of [0,1] by rescaling so that 0 as the minimum value of a
feature and 1 as the maximum value of a feature which thus
leads to more stable calculations.

4. Results
4.1. Data Collection

We have successfully obtained 36,037 clean and 26,979
malware Windows PE binaries, making a total of 63,016
binaries for our dataset with 2003 unique headers.

4.2. Data Preprocessing

We successfully preprocessed the data of all of these bina-
ries, extracting the fourteen optional headers of note as well
as the section header representation for each binary.

4.3. Model Accuracy, Precision, and Recall

With the RF classifier, we tested many different combina-
tions of parameters. We did not adjust the amount of ei-
ther clean or malware samples very much during training
for the milestone. We varied the hyperparameters, number
of estimators and max depth, to obtain preliminary results
of our classifier. When there were 654 clean samples, 266
malware samples, 10 estimators, and a max depth of 40,
we were able to obtain 92.12% accuracy, 95.5% precision,
and 63.69% recall. The high precision, which was close to
100%, and lower recall tell us that the RF classifier tends
to be cautious in predicting and generally correct when it
does, but might be missing many true classifications. After
the milestone, we increased the number of samples a lot so
we had 36k clean samples and 27k malware samples. We
had the best accuracy with max depth set to none and num-
ber of estimators set to 100 with 97% for precision and 97%
recall with an overall accuracy of 96%. The train-test split
we used was 0.3 for test size, 0.7 for training size. High
precision is indicative of very few false positives/FPs and
high recall is indicative of very few false negatives/FNs, so
our RF model is performing very well and near optimally.

Our MLP model has two linear layers with a ReLU layer
in-between. The output size was 1 since our goal was binary
classification. During the milestone, it seemed that we ran
into issues that would drastically change the model as we
changed the various parameters (i.e. which loss function
to use, which learning rate to choose, etc.). After printing
our results, we noticed the predictions were decent in early
epochs, but steadily became biased to only predicting ”0”

4



(i.e. that a given header was clean) as we continued through
the other epochs. Our model would consistently have high
accuracy, with an average of 92.44% accuracy. Since our
input dataset was primarily clean data to begin with (since
our dataset is unbalanced) predicting ”0” would be gener-
ally correct. We attributed this to potentially being an issue
with our dataset sampling. We fixed this issue as aforemen-
tioned by obtaining a larger dataset of clean and malware
samples and adjusted the way that we preprocess the data.
With 44111 data samples (both clean and malware), hid-
den layer size of 128, and learning rate of 1e-3, we got an
accuracy of 94.9% with 94.37% precision and 96.95% re-
call. Although slightly worse than our RF model, our MLP
model is performing near optimally with our high accuracy,
precision, and recall.

Figure 2. Training loss curve of the Multi-layer Perceptron (MLP)
Model.

Our FCNet model is comprised of linear layers with non-
linearities (ReLU) between with a varying number of hid-
den layers, essentially a more complex MLP model. Like
our MLP model, the output size was 1 due to our goal of
binary classification. With 44111 data samples (both clean
and malware), hidden layer sizes of 256, 128, and 64, learn-
ing rate of 1e-3, epoch count of 50, and batch size of 64,
we got an accuracy of 95.36% with 98.74% precision and
93.21% recall. So, our FCNet also performs slightly worse
than our near-optimal RF classifier. Despite this, our FCNet
performs marginally better than our MLP, with our FCNet
seemingly having less false positives but more false nega-
tives. We tried a couple of different optimization methods,
Adam seemed to be the most effective. We also attempted
to use dropout at a couple different levels of activation but
it seems that with our dataset it only introduced unwanted
noise.

Figure 3. Training loss curve of the Fully-connected Neural Net
(FCNet) Model.

Table 2. Accuracy, precision, and recall: Accuracy, precision
(correct positives classified / all guessed positives), and recall
(correct positives classified / all actual positives) for the Random
Forest (RF) classifier, Multi-layer Perceptron (MLP), and Fully-
connected Neural Net (FCNet).

RF MLP FCNet

Accuracy 0.9892621 0.949855 0.953610
Precision 0.9892989 0.943724 0.987360
Recall 0.991953 0.969476 0.932106

4.4. Model Performance

A major concern for this kind of malware identification
is performance, as many of the situations in which a bi-
nary malware classifier is used can be considered as ”fast
turnaround”, such as during network scanning with an IDS
or when downloading a file from the internet. If a classifier
is too slow, it limits its use.

In Table 3, we show that each type of model we tested
was fast enough to be used in these fast turnaround situa-
tions. Each set of timings was obtained using the models in
”CPU only” mode to better simulate the kinds of hardware
that would be available to a security appliance. Although
the Random Forest model was the fastest, all three model
types can classify in a fraction of a second and with mini-
mal resources.

Additionally, we ran these three models across two dif-
ferent types of systems to get a better idea of the per-
formance differences in potential security appliances with
varying hardware. We ran experiments on a typical lap-
top equipped with a Intel i5-10210U (8) @ 4.200GHz as
well as an enterprise-like server equipped with a Intel(R)

5



Table 3. Performance: Number of samples classified per sec-
ond for the Random Forest (RF) classifier, Multi-layer Percep-
tron (MLP), and Fully-connected Neural Net (FCNet) across two
different environments (Intel i5-10210U (8) @ 4.200GHz vs. In-
tel(R) Xeon(R) Gold 6148 CPU (80) @ 2.40GHz).

RF MLP FCNet

Intel i5-10210U
(8) @ 4.200GHz 6301.6667 420.1111 138.2328

Intel(R) Xeon(R)
Gold 6148 CPU
(80) @ 2.40GHz

7693.1840 285.8842 215.8043

Xeon(R) Gold 6148 CPU (80) @ 2.40GHz. Based on an in-
vestigation of a process viewer ‘htop‘ while running the RF
model, we believe RF runs on a single-core, making the RF
model run slower (fewer samples classified per second) on
a typical laptop over an enterprise-like server. Additionally,
the laptop had more samples classified per second than our
enterprise-like server, which we believe is due to the lap-
top’s fewer cores but faster clock. The FCNet model, due
to its heavy computation, produced fewer samples classified
per second on the laptop than the enterprise-like server.

5. Conclusion
In this work, we explored the idea of utilizing deep learn-
ing to classify Windows malware samples utilizing only PE
header information. We utilized three different models and
a large dataset collected and preprocessed in a unique way.

Our results indicated that not only is deep learning on PE
headers a viable method for identification of malware, but
by limiting the amount of information looked at, we can get
very close to state of the art results with minimal overhead.

Although our deep learning methods were effective, the
Random Forest classifier still performs the best. We rea-
son that this is due to the structured, relatively few feature,
discrete nature of the dataset. Neural networks deal best
with continuous data like images, video, and audio, or with
complex data like natural language which has an expansive
vocabulary and grammar. On the other hand, this dataset
only has a few features and they only have so many differ-
ent values. Thus, a Random Forest classifier has a better
architecture to take advantage of this dataset because it is
able to directly leverage the structure of it. Meanwhile, the
MLP and FCNet create some noise while trying to learn the
dataset so that it can be more generalizable which is useful
when you have a cat in different positions or different light-
ing but not when you do not really have these distortions in
a more abstract piece of data such as a header file.

We also explored running each of the three models on
different types of hardware to accommodate for the differ-
ing hardware that intrusion detection systems (IDSs) run on.

Both of these types of hardware were able to classify large
amounts of samples per second.

In future works, we would like to look at different head-
ers and perform further analysis to see which headers are the
most impactful on classification in the hopes of improving
our performance even further. In addition, taking into ac-
count section sizes as well as names could provide another
indicator a model could train on.

References
[1] Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein,

Animesh Jain, Michael Voznesensky, Bin Bao, Peter Bell,
David Berard, Evgeni Burovski, Geeta Chauhan, An-
jali Chourdia, Will Constable, Alban Desmaison, Zachary
DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael
Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalam-
barkar, Laurent Kirsch, Michael Lazos, Mario Lezcano,
Yanbo Liang, Jason Liang, Yinghai Lu, CK Luk, Bert Ma-
her, Yunjie Pan, Christian Puhrsch, Matthias Reso, Mark
Saroufim, Marcos Yukio Siraichi, Helen Suk, Michael Suo,
Phil Tillet, Eikan Wang, Xiaodong Wang, William Wen,
Shunting Zhang, Xu Zhao, Keren Zhou, Richard Zou, Ajit
Mathews, Gregory Chanan, Peng Wu, and Soumith Chin-
tala. PyTorch 2: Faster Machine Learning Through Dynamic
Python Bytecode Transformation and Graph Compilation. In
29th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume
2 (ASPLOS ’24). ACM, 2024. 4

[2] cocomelonc. Windows shellcoding - part 3. pe file format. 1
[3] Ivan Firdausi, Alva Erwin, Anto Satriyo Nugroho, et al. Anal-

ysis of machine learning techniques used in behavior-based
malware detection. In 2010 second international conference
on advances in computing, control, and telecommunication
technologies, pages 201–203. IEEE, 2010. 2

[4] Ajit Kumar, K.S. Kuppusamy, and G. Aghila. A learning
model to detect maliciousness of portable executable using in-
tegrated feature set. Journal of King Saud University - Com-
puter and Information Sciences, 31(2):252–265, 2019. 2

[5] Yibin Liao. Pe-header-based malware study and detection.
Accessed: 2025-03-14. 1, 2

[6] Zane Markel and Michael Bilzor. Building a machine learning
classifier for malware detection. Accessed: 2025-03-14. 2

[7] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011. 4

[8] M. G. Schultz, E. Eskin, F. Zadok, and S. J. Stolfo. Data
mining methods for detection of new malicious executables,
2001. 2

[9] vx underground. 2

6



Table 4. All optional headers found in our sample binaries, with
the mean and standard deviation of appearance of each field in
either clean or malware binaries.

OPTIONAL HEADER MEAN STD. DEV
clean 398.7543635707745 127.94492859890322Magic malware 333.81107528077393 112.42737874603714
clean 15.140050503649027 10.364115192992088MajorLinkerVersion malware 10.318506986915748 8.89393303909284
clean 27.775536254405196 16.576888164262762MinorLinkerVersion malware 9.500611586789725 15.047849524212433
clean 523135.0131808974 4476454.801637794SizeOfCode malware 772660.7794580971 22058735.64974974
clean 381318.63451452676 3596108.151768076SizeOfInitializedData malware 1287262.0976314913 8153821.424978578
clean 6262.271332241862 213992.5431117511SizeOfUninitializedData malware 449410.21713184327 1189689.8421901606
clean 271583.6142020701 2264092.3408621377AddressOfEntrypoint malware 1801769.4346343451 69914096.20842524
clean 4889.680273052696 32304.27350265249BaseOfCode malware 449934.82278809446 1191853.4522491896
clean 3583276193291366.5 2.5707038688337206e+17ImageBase malware 37694272213.22777 2266001763618.479
clean 4748.085356716708 1660.347758138156SectionAlignment malware 154771.0790244264 24693885.228453256
clean 1525.6976995865361 1614.1102269020255FileAlignment malware 79079.36843470848 12769428.345477177
clean 7.5792935038987705 2.705877159475324MajorOperatingSystemVersion malware 6.883316653693614 350.06679980168525
clean 0.12748008990759496 0.46839675823816446MinorOperatingSystemVersion malware 1.9254976092516403 290.9388170090119
clean 66.704248411355 1111.5546360172523MajorImageVersion malware 5.302568664516847 384.30532968456095
clean 70.85015400838027 1189.2707267359413MinorImageVersion malware 3.141295081359576 302.9636582487618
clean 7.081943558009823 2.400623703037888MajorSubsystemVersion malware 5.935208866155158 178.04256201264815
clean 0.33557177345506006 0.7967545677358044MinorSubsystemVersion malware 0.5462396678898402 64.11376264450891
clean 0.0 0.0Reserved1 malware 149386.124244783 24536592.415149458
clean 984301.0292754669 6922714.68150624SizeOfImage malware 2924184.126468735 25125907.316255175
clean 1733.167355773233 1503.0860490250893SizeOfHeaders malware 10223.187145557657 1334443.536601544
clean 931112.7579987235 6964823.554262584CheckSum malware 2018312.588531821 37282581.4800254
clean 2.552987207592197 0.708705533121903Subsystem malware 4.359724229956633 354.1415732395719
clean 18053.380248078363 14512.904923390875DllCharacteristics malware 17294.384669557803 17493.374886524613
clean 916377.1110802786 992116.6869331253

7



Table 4 continued from previous pageSizeOfStackReserve malware 1330521.401238 12629691.18946378
clean 5080.79229680606 21344.88628088939SizeOfStackCommit malware 107496.25616220022 14024984.131094605
clean 1013956.8936370952 191874.9164820748SizeOfHeapReserve malware 1300325.3446384224 23975571.335348666
clean 4090.9989177789494 931.5417599199343SizeOfHeapCommit malware 54201.69887690426 8226110.497778804
clean 8700.064489274911 95115.65433612066LoaderFlags malware 89494.38192668372 14699435.204358535
clean 15.999445014845852 0.074495258459515NumberOfRvaAndSizes malware 4032620.09844694 61102414.934546836

8


	. Introduction
	. Related work
	Dataset Collection
	Malware Sample Identification


	. Method
	. Dataset Collection
	. Feature Extraction, Embeddings, and Pre-processing
	. Models

	. Results
	. Data Collection
	. Data Preprocessing
	. Model Accuracy, Precision, and Recall
	. Model Performance

	. Conclusion

