
wikiwebwalker: Using Semantic Similarity Analysis to Optimize Finding
Paths between Articles in an Interlinked Database

Jasmine Cai, Nate Courchesne and James Grassi
Manning College of Information and Computer Sciences

University of Massachusetts Amherst
Amherst, MA 01003

{jlcai, ncourchesne, jgrassi}@umass.edu

Abstract

To optimize searching for a path between spe-
cific topics in a vast interlinked database like
Wikipedia, we need to use various search tech-
niques that will help speed up the process. We
used a unique natural language processing met-
ric, semantic similarity, as a measure for deter-
mining the relationships between words in arti-
cles in a database. In this paper, we proposed a
streamlined way of using this measures to aid
in Wikipedia traversal by it’s use as heuristics
to aid in an assisted graph search algorithm. We
tested several search algorithms like breadth-
first search and A* against Wikipedia articles
and evaluated each pass based on how few steps
it takes to reach point B from point A.

1 Introduction

1.1 Problem Statement
The Internet continues to grow every day and, as a
result, looking for specific articles or topics in such
a large database of knowledge becomes very diffi-
cult without the aid of tools. With the vastness of
it all, there are many instances where pages never
link together, and it becomes easier to lose various
pieces of information due to a lack of indexing and
accessibility. Thankfully, within streamlined and
interlinked databases like Wikipedia, this problem
becomes less of an issue. The main problem now
lies in finding paths from article to article, where
we need to find the links between different top-
ics on different sides of Wikipedia. Finding the
missing links between different articles can be very
important for research to help bridge connections
to prove certain path solutions feasible due to their
unapparent relatedness.

1.2 Background
Large databases of knowledge like Google utilize
various search techniques and query "expectation"
metrics to help provide relevant queries for their
users every day.

Common search and data extraction techniques
involve web crawling, API integration, optical
character recognition (OCR), and other forms of
database querying (Docsumo, 2024). Google uti-
lizes web crawling where bots crawl pages, and
each page goes through a preprocessing phase
where all of the textual content, attributes, page
elements (i.e. HTML), and more are parsed and
indexed (Google, 2024).

Natural language processing metrics like seman-
tic similarity and contextual relatedness are fre-
quently utilized in search optimization and are good
ways to find relationships between different words.
Semantic similarity is a measure of how frequently
words co-occur with each other (i.e. synonyms or
near-synonyms). Contextual relatedness is a mea-
sure of how frequently words occur within a similar
context (related by subjects they discuss). These
metrics can be used on word embeddings of word
documents to determine their approximate similar-
ity. Methods like cosine similarity are a common
way to see the semantic similarity of two different
word documents X and Y and measure the angle
between the two vectors (Wikipedia, 2024). The
equation for cosine similarity can be seen here:

cosine similarity =
X · Y
||X||||Y||

(1)

1.3 Proposal

This report documents our approach to solving this
interconnecting problem by utilizing natural lan-
guage processing metrics like semantic similarity
to aid graph searches between different articles, or
nodes, in a database web. We used this metric to
guide our graph search to minimize the number of
steps it takes from point A to point B in this inter-
linked network. Our approach consists of two main
components: devising the network graph search
algorithm and determining semantic similarity em-
beddings.

For devising the graph search algorithm, we
wanted to use algorithms that can step into links
within an entry-point article, gather information
about each link within it, and ideally make an edu-
cated step closer to the exit-point article based on
our aforementioned NLP metric. After determining
which types of algorithms would fit the most with
this behavior, we compared breadth-first search,
our control group, to an A* search using semantic
similarity between articles as its heuristic function.
Both algorithms prioritize finding the shortest path
given the distances (or hops) between nodes. From
any given Wikipedia article, it is possible to view
the title and title of all articles that they link to.
After obtaining all the links within a layer, we have
three methods of utilizing the articles in our seman-
tic scoring algorithm: full documents (articles), the
first paragraph of articles, or article titles only.

For the semantic similarity measure, we planned
to utilize large language models skilled in taking
the word embeddings of documents like Distil-
BERT to implement similarity algorithms like co-
sine similarity. After obtaining the embeddings of
articles using pre-trained DistilBERT models, we
can use them and evaluate their similarity scores
against the exit point article via cosine similarity.

After testing these two search algorithms and
three different methods of using the Wikipedia cor-
pus, we aim to learn if we can efficiently determine
the least number of steps between two different
points in an interlinked database, and if measures
like semantic similarity are good metrics of weight-
ing in our search.

2 Related Work

2.1 Enhanced search via semantic similarity
queries

Topic-specific web crawlers usually focus on link
analysis (determining the most popular links via
backlinks, content analysis (relevant web pages to
what your main goal is), and ontologies (remov-
ing irrelevant pages and subsequently improving
performance). (Pesaranghader et al., 2013) sug-
gests a new method of training web crawlers that
improves on something previous crawlers do not
touch upon: considering semantic similarity along-
side the “sense”, or the definition regarding the
original context, of the input topic word.

They present the idea of using the visualization
of documents as vectors in the space of terms via
Vector Space Models (VSMs) in Information Re-

trieval (IR) for determining semantic similarity. To
measure this similarity, they utilized cosine simi-
larity.

Figure 1: Determining semantic similarity (via cosine
similarity) of a vector space of n documents compared
to a webcrawler query document (exit).

Our first idea when tackling the problem of in-
terlinked database traversal relied mostly on web
crawlers and Selenium webdrivers. We later opted
for utilizing the static HTML files instead, but we
still used this paper as a good example of consid-
ering semantic similarity (cosine similarity as a
numerical metric) for enhanced search.

2.2 Efficient crawling via URLs with ordered
frontlines and backlinks

Creating an ordered queue of links to go through
with a webcrawler or database network search
would be beneficial for efficiency and computa-
tional complexity. With a problem like travers-
ing Wikipedia, the computational complexity of
a search through it all will only exponentially in-
crease with the increased vastness of the database
subset we work with. (Cho et al., 1998) describes
different efficient URL sorting algorithms with en-
queuing and dequeuing frontlinks and backlinks to
find some “hot” page. This paper describes general
metrics for how to develop efficient web crawlers
and tips on how to create an ordering strategy. This
paper may become useful because the computa-
tional complexity of what we’re trying to accom-
plish will only exponentially increase with the vast-
ness of the subset of Wikipedia we are dealing with,

so having some ordering strategy and methods of
increased efficiency will prove to be useful.

The crawling and semantic search algorithms
that are described here all stop after visiting K
URLs. We seek to adapt these types of algorithms
until we reach a known exit-point article.

2.3 Breadth-first search of Wikipedia

(Wenger, 2018) is a website that has a very sim-
ilar task to ours. Their main search algorithm
is breadth-first search, but it does not seem like
there is a heuristic based on any natural language
processing-based heuristics. This inspired us to
attempt to do breadth-first search and see if it was
feasible to step through the links of Wikipedia only
with frontlinks and backlinks, since this tool ap-
pears to demonstrate a functional implementation
of the concept.

3 Data

Our dataset is composed of the pre-processed and
extracted Plaintext versions of Wikimedia Down-
loads (a.k.a WikiDumps). This database was ob-
tained from Wikipedia’s database backup dumps,
and includes a total copy of all Wikimedia wikis,
i.e. the wikitext source and XML-embedded meta-
data of each page. We decided to choose the XML
files instead of static HTML because the file size
of our dataset is 23 GB uncompressed and it would
take a very long time to download the HTML ver-
sion. The zipped XML file is already 20.5GB, and
XML allows the transfer of data to go smoothly.
In addition, since XML is very similar to HTML
in the sense that they are both markup languages,
the XML file can be parsed easily to look for our
desired information.

To preprocess and extract the WikiDumps
XML file we made use of Wikiextractor, which
is a command-line tool that extracts data from
Wikipedia dump files. It can run as a subprocess
and directly extract files into a directory. After-
ward, the directory can be accessed and parsed to
convert the files to a list of strings. Next, the JSON
data can be loaded from the files to get a list of
dictionaries, which can then be used for prepro-
cessing. While obtaining all the articles could be
done with many GET requests via Python libraries
like Wikipedia (aptly named), we did not want to
overload the Wikipedia servers with mass amounts
of scraping. Utilizing the static files themselves
allowed us to avoid any unnecessary errors with

sending requests to obtain the data i.e. bandwidth
consumption caused by trying to request such a
large amount of data.

Each pre-processed and extracted file given by
Wikiextractor contains many articles, so we parsed
each file using regular expressions. With each ar-
ticle, the HTML was preserved and internal links
could easily be extracted. In total, we have 237
folders each with 100 files, and each file with any-
where from 200 to 1,000 articles. This totals about
22.8 GB of data and 16,000,000 articles – all of
which were stored on an external SSD. We used
a smaller subset of files (2,200 files) for training
demo purposes which will be detailed in the Re-
sults section.

4 Method

From any given Wikipedia article, it is possible to
view the title and short descriptions of all articles
that it links to. We implemented both breadth-first
search and A* search. We also measured the differ-
ence between three different metrics: article titles,
article’s first paragraph, or article’s full document
text to determine which one is faster and takes
fewer hops. Once the testing metric was chosen,
upon visiting an article, all of the articles it links to
are ranked by their likely similarity to the destina-
tion article we are trying to reach, by calculating
the semantic similarity of the metric in question
to that of the destination article. These algorithms
will then open links from their previously traversed
articles starting with the most-semantically-similar
first. These algorithms were assessed to deter-
mine how much more efficient they are, if at all,
than other graph traversal-based approaches, like
Breadth-First-Search, or searches that prioritize
other metrics such as checking larger articles first.

Algorithm 1: Semantic Similarity

1 Function most_similar(entry, current_layer)
is

2 similarity_array = [] ;
3 foreach node: current_layer do
4 similarity = cosine_similarity(entry,

node) ;
5 similarity_array← similarity

6 return max(similarity_array) ;

Algorithm 2: A* Graph Search with Se-
mantic Similarity Heuristics

1 Function A_star(entryName, exitName) is
2 visited = ()
3 queue← page names, scores
4 while True do
5 queue← sorted(scoresinqueue)
6 path← most recent in queue
7 currNode← most recent in path
8 currPage

← currNode’s pageName info
9 if currPage is exitName then

10 return path
11 if currPage not in visited then

12 is exit page visited← currPage
13 if links not empty then

14 most_similarity of article
names/titles,

15 article first paragraph,
16 OR article full doc
17 visited← most sim page

18 return path

5 Results

For calculating results, we utilized the Six Degree
of Wikipedia’s number of links traversed (hops) and
the time elapsed as a benchmark to compare our
implementation of the task to. We included the
table and graph representation of the data to help
visualize the aggregated graph (Fig. 7) easier since
it is printed very small.

Ultimately, breadth-first search was too slow and
did not produce any meaningful data (or any data at
all), so we measured based on our A* approaches
with different amounts of the corpus considered for
semantic similarity.

We ran five different Wikipedia traversal tasks:
Judge Dredd to North Korea, North Korea to Japan,
Judge Dredd to Samurai, Japan to Shogun, and
Japan to Samurai. For each of these traversal tasks,
we used the article titles, first paragraphs, and full
documents of the interconnected nodes as the basis
of our cosine similarity.

Overall, the results seem to indicate that utilizing
the titles of articles only when doing our Wikipedia
traversal seems to be the fastest, while the first
paragraph and full document tend to take longer
than each other in some experiments without a

SDOW
3 hops
1.03s

Titles
5 hops
5.65s

1st Para
8 hops
240.8s

Full Doc
6 hops
135.65s

Table 1: Number of links traversed (hops) and time
elapsed for Six Degrees of Wikipedia (SDOW), A*
search w/ semantic similarity of only article titles, first
paragraph, and full document respectively of Judge
Dredd→ North Korea.

SDOW
1 hop
0.49s

Titles
2 hops
0.7s

1st Para
2 hops
50.2s

Full Doc
2 hops
58.6s

Table 2: Number of links traversed (hops) and time
elapsed for Six Degrees of Wikipedia (SDOW), A*
search w/ semantic similarity of only article titles, first
paragraph, and full document respectively of North Ko-
rea→ Japan.

SDOW
2 hops
1.07s

Titles
7 hops
4.6s

1st Para
6 hops
187.5s

Full Doc
6 hops
183.2s

Table 3: Number of links traversed (hops) and time
elapsed for Six Degrees of Wikipedia (SDOW), A*
search w/ semantic similarity of only article titles, first
paragraph, and full document respectively of Judge
Dredd→ Samurai.

SDOW
1 hops
0.44s

Titles
2 hops
0.8s

1st Para
2 hops
51.1s

Full Doc
3 hops
92.1s

Table 4: Number of links traversed (hops) and time
elapsed for Six Degrees of Wikipedia (SDOW), A*
search w/ semantic similarity of only article titles, first
paragraph, and full document respectively of Japan→
Shogun.

SDOW
1 hop
0.42s

Titles
3 hops
2.4s

1st Para
3 hops
125.7s

Full Doc
3 hops
83.4s

Table 5: Number of links traversed (hops) and time
elapsed for Six Degrees of Wikipedia (SDOW), A*
search w/ semantic similarity of only article titles, first
paragraph, and full document respectively of Japan→
Samurai.

clear indicator as to why. For the number of hops,
it seems like all of the different experiments that
we performed (disregarding the baseline SDOW)
had a comparable amount of hops, each differing
with ±1 hop across each traversal trial.

Figure 2: Graph comparing number of hops and time
elapsed between SDOW (baseline) and our three ex-
periments of A* search with article titles, article first
paragraphs, and article full documents for JudgeDredd
→ NorthKorea..

Figure 3: Graph comparing number of hops and time
elapsed between SDOW (baseline) and our three ex-
periments of A* search with article titles, article first
paragraphs, and article full documents for NorthKorea
→ Japan..

6 Discussion and Future Work

While our work demonstrated that using semantic
similarity as a heuristic for an A* search could lead
to speed and computation improvements compared
to Breadth-First-Search, we ultimately failed to im-
prove on the existing speed and accuracy of Six
Degrees of Wikipedia due to other factors includ-
ing less optimized code and a lack of caching. Re-
implementing our search algorithm with a different
code base which utilizes other search-time opti-
mization techniques would allow us to effectively
demonstrate the practical applications of semantic
A* search.

We also did not ultimately achieve our initial
goal of comparing algorithms based on both se-
mantic similarity and semantic relatedness. As
other studies on semantic relatedness such as (Ab-
dalla et al., 2023) have noted, there is a current
shortage of data and resources on the topic of se-
mantic relatedness. In particular, the lack of an
available model that could be slotted into our code
which was able to calculate the semantic related-

Figure 4: Graph comparing number of hops and time
elapsed between SDOW (baseline) and our three ex-
periments of A* search with article titles, article first
paragraphs, and article full documents for JudgeDredd
→ Samurai..

Figure 5: Graph comparing number of hops and time
elapsed between SDOW (baseline) and our three ex-
periments of A* search with article titles, article first
paragraphs, and article full documents for Japan →
Shogun..

Figure 6: Graph comparing number of hops and time
elapsed between SDOW (baseline) and our three ex-
periments of A* search with article titles, article first
paragraphs, and article full documents for Japan →
Samurai..

ness of two words in the same way that we could
for semantic similarity put the concept outside the
immediate scope of our project. If implemented, a
search based on semantic relatedness could poten-
tially further reduce the number of articles that our
search algorithm needs to check before finding its
target article. The shortest paths between articles
often involve traversing through articles that are

Figure 7: Aggregated graphic comparing the number of
hops and time elapsed between SDOW (baseline) and
our three experiments of A* search with article titles,
article first paragraphs, and article full documents.

about different subjects within the same field, but
do not necessarily mention the subject of the target
article or any close analogues thereof. Some of the
benefit of this style of search, however, is already
captured by the version of semantic A* which takes
into account the entire text of the article, since any
two articles about subjects in a similar field are
liable to share some of the terminology related to
that field.

In addition, we found that two issues with our
dataset were likely to have caused problems with
out results. First, we could not use the entirety of
the WikiDumps dataset due to the size. Our parsing
algorithm could not go through the files in a rea-
sonable amount of time, so only a subset was used.
As a result, many links might not have any data as-
sociated with them, so they can not be considered
during traversal. Therefore, the most efficient path
from one page to another may not be currently ex-
ist. With the addition of every link, our algorithms
may be a lot quicker and use less hops. Second,
the XML files provided by WikiDumps often had
gaps in data. When considering Six Degrees of
Wikipedia, "North Korea" to "Japan", "Japan" to
"Shogun", and "Japan" to "Samurai" can be found
in only one hop. This is because each of the start-
ing pages have the exit page as a link. Since our
algorithms should be using the same dataset, we
should expect one hop to occur as well. However,
as the results show, this is not the case. For exam-
ple, when looking in the "Japan" XML file, many
paragraphs do not exist when compared to the ac-
tual Wikipedia page. In particular, both "Samurai"
and "Shogun" do not exist in the XML file, while
they do in the Wikipedia page. This causes our
algorithms to make an extra hop before finding the
exit page from another source page. In the future,

if we were able to use a more reliable dataset, it is
expectant for our algorithms to run in much more
efficient manner.

Despite these shortcomings, it is clear that
searching based on semantic similarity can reduce
the number of nodes that need to be checked when
traversing between two articles in an interlinked
database of texts which connects related items.

References
Mohamed Abdalla, Krishnapriya Vishnubhotla, and

Saif M. Mohammad. 2023. What makes sentences
semantically related: A textual relatedness dataset
and empirical study.

Junghoo Cho, Hector Garcia-Molina, and Lawrence
Page. 1998. Efficient crawling through url ordering.
In Proceedings of the Seventh International Confer-
ence on World Wide Web 7, WWW7, page 161–172,
NLD. Elsevier Science Publishers B. V.

Docsumo. 2024. 7 common data extraction techniques
for efficient information retrieval.

Google. 2024. In-depth guide to how google search
works.

Ali Pesaranghader, Norwati Mustapha, and Ahmad Pe-
saranghader. 2013. Applying semantic similarity
measures to enhance topic-specific web crawling.

Jacob Wenger. 2018. Six degrees of wikipedia.
https://github.com/jwngr/sdow?tab=
readme-ov-file.

Wikipedia. 2024. Cosine similarity.

http://arxiv.org/abs/2110.04845
http://arxiv.org/abs/2110.04845
http://arxiv.org/abs/2110.04845
https://www.docsumo.com/blog/data-extraction-techniques
https://www.docsumo.com/blog/data-extraction-techniques
https://developers.google.com/search/docs/fundamentals/how-search-works
https://developers.google.com/search/docs/fundamentals/how-search-works
https://doi.org/10.1109/ISDA.2013.6920736
https://doi.org/10.1109/ISDA.2013.6920736
https://github.com/jwngr/sdow?tab=readme-ov-file
https://github.com/jwngr/sdow?tab=readme-ov-file
https://en.wikipedia.org/wiki/Cosine_similarity

